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Abstract. We study the activity of financial markets, i.e., the number of transactions per unit of time. Using
the diffusion entropy technique we show that the autocorrelation of the activity is caused by the presence
of peaks whose time distances are distributed following an asymptotic power-law which ultimately recovers
an exponential behavior. We discuss these results in comparison with ARCH models, stochastic volatility
models and multi-agent models showing that ARCH and stochastic volatility models better describe the
observed experimental evidences.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 05.45.Tp Time
series analysis – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Overview

Financial time series present a strongly inhomogeneous
time behavior. This is specially true when one considers
either the volatility or the activity, the latter defined as the
number of transactions per unit of time [1,2]. Indeed if we
look at the variance of the return in a time window of, say,
one day we will observe periods of relative constant and
regular behavior followed by other periods of strong varia-
tion of the price. In the same way there are days with few
transactions and others where the number of trades is con-
siderably larger. This great variability in the volatility or
in the activity is generally referred to as volatility cluster-
ing or intermittency of volatility and activity. In this work
we refer to both quantities. We will thus perform measures
on the activity and use two volatility models: (i) ARCH
models [3] and (ii) stochastic volatility (SV) models [4,5],
where the relationship between volatility and activity is
set by the usual assumption of proportionality between
them [6–10].

As is well known, the time interval or distance between
two consecutive transactions τ is a random variable de-
scribed by a probability density function (pdf) ψ(τ) which
in many cases presents an asymptotic power law of the
form [11–13]

ψ(τ) ∼ 1/τβ. (1)
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Note that the form of ψ(τ) does not tell anything about
the independence of consecutive τ ’s. However, if consecu-
tive τ ’s are independent a power-law tail in ψ(τ) can ex-
plain an inhomogeneous behavior in the number of events
per unit of time, where a possible measure of this inho-
mogeneity is the distribution of the number of trades in a
fixed period of time t. Thus, as Feller proved many years
ago [14], if the time interval τ between some particular
events, which we will call markers, in a time series is dis-
tributed according to a given density ψ(τ) and the inde-
pendence condition 〈τiτj〉 = 〈τi〉〈τj〉 for i �= j holds, then
the probability distribution to observe a fixed number of
these markers y in a given time interval, p(y, t), obeys the
following scaling law

p(y, t) =
1
tδ
F

( y
tδ

)
, (2)

where δ is some positive exponent and F (x) is a posi-
tive and integrable function. With the help of a recently
developed technique for the analysis of time series called
Diffusion Entropy (DE) [15], we will see that the scaling
observed in the distribution of the number of transactions
in a time interval does not correspond to Feller’s analyti-
cal prescription obtained with the density ψ(τ) estimated
from data.

We are thus forced to make the additional hypothesis
that consecutive τ ’s are not independent. We will also as-
sume that this correlation is due to the presence of peaks
(or clusters) in the mean activity followed by periods of
relative calm. Therefore the τi’s are positively correlated
because during a peak of activity they are shorter than the
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mean value while away from a peak they are greater than
the mean. Indeed, in such a case 〈(τi−〈τi〉)(τj −〈τj〉)〉 ≥ 0
which implies a positive correlation: 〈τiτj〉 ≥ 〈τi〉〈τj〉.

Let τc be the random time interval between two con-
secutive peaks and denote by φ(τc) its probability density
function. Similarly to the distribution of the time interval
between two consecutive transactions ψ(τ) given by equa-
tion (1), we will also assume that φ(τc) obeys an asymp-
totic power law:

φ(τc) ∼ 1/τµ
c . (3)

In this scheme the results of the DE technique can be de-
scribed directly in terms of the time interval and the mag-
nitude of the peaks of activity, the latter described by a
pdf h(x). We will see, like in reference [16], that the distri-
bution of the size of a cluster given by h(x) does not play
an important role, because the time interval distribution
φ(τc) is characterized by a more anomalous exponent than
that of h(x). Consequently we will interpret the results of
DE as a consequence of a non-Poissonian distribution of
the distance between peaks of activity.

There are in the literature several approaches which
try to explain the autocorrelation of activity and volatility.
One recent model [8,9,17] is based on the hypothesis that
the intermittency of activity is caused by a subordination
to a random walk, like in the case of the so called on-off
intermittency [18]. As is clearly described in [9], this pro-
cedure should give for the distribution of time distances
between clusters a scaling law of the form

φ(τc) � 1

τ
3/2
c

f
(τc
λ

)
, (4)

where f(t) is a cutoff function ensuring the existence of
the first moment of φ(τc) and λ is the time scale at which
this cutoff takes place. One simple choice for f(t) is given
by the exponential f(t) = ke−t which allows that φ(τc)
presents an asymptotic Poissonian (i.e., exponential) be-
havior.

As we have mentioned, other possible approaches are
provided by ARCH and SV models. We will show that
both models lead to a correlation in the volatility which
more likely resembles to some of the power-law tail expo-
nents observed in a variety of financial markets. We will
also show that a particular ARCH model, the TARCH
model presented in [19], and the SV model presented
in [5,20] both result in the same scaling law than that
observed with the DE technique. Finally, and due to the
absence of intra-day disturbances in the time series ob-
tained by ARCH and SV models, we are also able to eval-
uate numerically the waiting time distribution φ(τc) of the
distance between peaks and this distribution is compatible
with the empirical evidence given by a power-law behavior
for a long transient period followed by a Poissonian behav-
ior. We incidentally note that the asymptotic exponential
behavior indicates that very far clusters do not influence
each other.

The paper is organized as follows. We start with a brief
review on the DE technique and a simple analytical proof
that the DE results are determined by the most anoma-
lous power-law tail between φ(τc) and h(x). After that we

show the results obtained by means of the DE technique
on tick by tick data of a Foreign Exchange (FX) market.
We also perform a filtering procedure on data in order
to prove that the observed scaling is due to the anomaly
in the waiting time pdf φ(τc) rather than in the cluster
size pdf h(x). Finally, we briefly describe the ARCH and
the SV models and the results of the DE and the wait-
ing time distribution on the time series constructed using
these models.

2 Diffusion entropy analysis

The diffusion entropy technique is basically an algorithm
designed to detect memory in time series [15]. DE is spe-
cially suitable for intermittent signals, i.e., for time series
where bursts of activity are separated by periods of qui-
escent and regular behavior. The technique has been de-
signed to study the time distribution of some markers (or
events) along the time series and thus discover whether
these events satisfy the independence condition 〈τiτj〉 =
〈τi〉〈τj〉 (i �= j) where τi is the time interval between the
marker labeled i − 1 and the next one i [16,21–23]. As
marker we use here a very simple definition: each trade
in the time series is a marker. In order to apply the DE
technique we need to construct a new series ξi which is a
function of a coarse grained time i∆t (in our case∆t = 1 s)
and where ξi is precisely the number of transactions that
occurred in the previous second. We next define a new
random process through the following moving counting
on ξi

yl(t) =
l∑

i=l−t/∆t

ξi. (5)

Note that yl(t) is precisely the number of markers (i.e.,
trades) in an interval of length t starting at position l.
If we vary the value of l along the interval [0, N − t/∆t],
where N is the total length of the sequence, we can ob-
tain the probability density function, p(y, t), of this ran-
dom process. It has been shown in [15] that for the zero-
mean process y → y − 〈y(t)〉 and assuming that ξi is a
renewal process p(y, t) obeys Feller’s scaling law given by
equation (2). Hence the entropy of this random process
reads [15]

S(t) = −
∞∫

−∞
p(y, t) ln [p(y, t)] dy = A+ δ ln(t). (6)

From the slope of S(t), in a logarithmic scale, we get an
estimation of the scaling parameter δ. In Figure 1 we show
the results obtained with DE on tick by tick data of the
US dollar – Deutsche mark futures market from 1993 to
1997 with a total of 1.3 × 106 data points (solid circles).
Other technical details regarding the data are further de-
veloped in [24]. The fit gives δ = 0.90. As is shown in [15]
if condition 〈τiτj〉 = 〈τi〉〈τj〉 holds then there exists a re-
lation between the scaling exponent δ and the exponent β
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Fig. 1. Results of the DE analysis for US dollar –
Deutsche mark futures market for different values of the time-
threshold T .

of the power-law tail of the time distribution of markers
(in our case, trades) ψ(τ) (see Eq. (1)). This relation reads

δ =

{
1/(β − 1), if 2 < β < 3;
0.5, if β > 3.

(7)

We have shown elsewhere that for the FX market under
consideration the power-law tail exponent of the waiting
time distribution between trades is near 3.5 [13]. Accord-
ing to equation (7) this would lead to δ = 0.5 — after
a transient comparable with the mean trade distance of
〈τ〉 = 23.6 s — in disagreement with the value δ = 0.90
obtained by DE.

We now present a picture which describes peaks of
activity separated by periods with a low number of trans-
actions. We see in Figure 2 a schematic representation of
this picture in which, for instance, the intensity x3 of the
third peak is represented by a black spot and this corre-
sponds to the total number of transactions attributed to
this peak.

We suppose that the time intervals between peaks, τc,
are distributed according to a pdf φ(τc) which asymptot-
ically behaves as in equation (3), i.e., φ(τc) ∼ 1/τµ

c . We
also assume that the intensity of a given peak, xi, defined
as the total number of transactions in the peak, has a
distribution given by a pdf h(x). In the context of earth-
quakes h(x) is generally referred to as the Pareto law of
the size of the earthquake clusters, since asymptotically
h(x) ∼ 1/xα+1 as in the Pareto distribution [16].

We will now present a proof that the DE technique
perceives the most anomalous (i.e., the smallest) of the
two exponents µ and α+1. Indeed, let ρ(x, t) be the joint
pdf for the waiting time τc between clusters and their in-
tensity x. We denote by

ρ̂(ω, s) =
∫ ∞

−∞
dxeiωx

∫ ∞

0

dτce
−sτcρ(x, τc)

its Fourier-Laplace transform. Observe that in terms of
ρ̂(ω, s) the Laplace transform of the waiting time distribu-
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Fig. 2. Scheme of the model for the anomalous scaling for
activity and volatility.

tion φ̂(s) and the Fourier transform of the size distribution
h̃(ω) are given by

φ̂(s) = ρ̂(ω = 0, s) and h̃(ω) = ρ̂(ω, s = 0). (8)

We assume that the time duration of a peak is negligible
with respect to the mean time interval between peaks [25].
In such a case we can use the Continuous Time Random
Walk (CTRW) formalism to calculate the probability den-
sity function, p(y, t), that the number of trades at time t is
given by y. Thus, in terms of the joint distribution ρ̂(ω, s)
the Fourier-Laplace transform of p(y, t) is given by [13]

p̂(ω, s) =
1 − φ̂(s)

s

1
1 − ρ̂(ω, s)

. (9)

We can easily see that as s → 0 then [1 − φ̂(s)]/s ∼ 〈τc〉,
where 〈τc〉 is the mean waiting time. Hence

p̂(ω, s) � 〈τc〉
1 − ρ̂(ω, s)

, (s→ 0). (10)

On the other hand, as s→ 0 we have (see Eq. (3))

φ̂(s) � 1 − 〈τc〉s+ c0s
µ−1, (2 < µ < 3). (11)

Moreover, as ω → 0 and consistently with the Pareto law
according to which h(x) decays as 1/xα+1, we have

h̃(ω) � 1 + i〈x〉ω + b0ω
α, (1 < α < 2), (12)

where 〈x〉 is the average peak intensity. Taking into ac-
count equations (11, 12) we see that as s → 0 and ω → 0
the joint distribution ρ̂(ω, s) can be written as

ρ̂(ω, s) � 1−〈τc〉s+ i〈x〉ω− i〈xτc〉ωs+b(s)ωα +c(ω)sµ−1,
(13)

where b(s) and c(ω) are such that b(0) = b0 and c(0) = c0.
We recall that the DE technique measures the scaling in
a “moving reference frame” where the average activity
is zero, 〈y(t)〉 = 0 for all t ≥ 0. In order to obtain the
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pdf for y(t) in such reference frame we perform in equa-
tion (13) the following substitution

s −→ s+ iω
〈x〉
〈τc〉 , (14)

and after applying the diffusive limit 〈τc〉|s| � 〈x〉|ω| we
get, to the lowest order,

ρ̂(ω, s) � 1 − 〈τc〉s+ b0ω
α + c0(i〈x〉/〈τc〉)µ−1ωµ−1. (15)

Substituting equation (15) into equation (10) finally yields

p̂(ω, s) � 〈τc〉
s〈τc〉 − bωα − c (i〈x〉/〈τc〉)µ−1

ωµ−1
. (16)

This equation shows that the smallest exponent between
α and µ − 1 determines the asymptotic scaling of p(y, t)
according to the exponent

δ =

{
1/(µ− 1), if µ− 1 > α;
1/α, if µ− 1 < α.

(17)

Therefore, the scaling perceived by DE is determined by
the most anomalous exponent of the scaling between the
size of the clusters of activity and the distribution of their
time intervals. Note that the case δ = 1/(µ − 1) agrees
with that of equation (7). We also observe that we have
proven this fundamental result for the most general case in
which there is no assumption on the possible correlation,
or independence, among intensities and waiting times.

Having this in mind, we return to the problem of ex-
plaining the scaling exponent δ = 0.90 appearing in the
US dollar – Deutsche mark futures market. To what effect
is due this scaling? In other words, is the exponent δ de-
termined by the time interval between clusters or by their
size? In order to solve this question we impose a cutoff
in the size of the peaks of activity by eliminating those
transactions whose time interval from the previous one is
below certain threshold T (note that this actually reduces
cluster sizes because the number of transactions counted
is now smaller). If after this cutoff procedure the scaling
remains invariant then δ would be determined by the time
intervals and not by the size of the clusters. In Figure 1
the DE results are shown for different values of the time-
threshold T ranging from 0 to 80 s. We see there that
the slope is practically unchanged which confirms the as-
sumption that the exponent δ = 0.90 is solely determined
by the anomaly in the time intervals between the clusters
and not by any anomaly of their size.

3 ARCH, stochastic volatility
and on-off intermittency models

At the end of the last section, we have indirectly shown
that the anomalous scaling δ = 0.90 observed in data is
not caused by fat tails in the peak intensity distribution
h(x) but by the anomalous scaling in the waiting time

distribution between peaks. Another more direct way to
prove this would have been to single out the peaks on
actual data and look for their time distribution. Unfortu-
nately it is very difficult, on real data, to define a peak
of activity and compute the waiting time distribution be-
tween them. This is because there are peaks of activity
that appear at fixed times (we will call these “determinis-
tic peaks”) at the daily opening and closing sessions, at the
opening during the day of other markets and even weekly
at the opening of each monday [26]. These deterministic
peaks do not contribute to the increase of entropy. How-
ever, they do affect any estimation of the waiting time
distribution which makes it very difficult obtaining a reli-
able estimate of it.

A possible way out from this situation would be to
generate an artificial time series simulating the real mar-
ket evolution. In this artificial series, the activity would
be replaced by the volatility following the accepted corre-
spondence between them [6–10] and we would check there
all the scaling phenomena reported up till now. Specifi-
cally we will assume the proportionality between activity
and volatility (see Eq. (19) below). In fact, in order to ex-
plain the observed scaling, it is not necessary to assume
the exact proportionality. Indeed, the crucial point is that
the occurrence of volatility peaks correspond to peaks for
the activity, being the scaling determined by the statistics
of the time intervals between peaks.

We will follow this procedure and choose two well ac-
cepted models for reconstructing market activity with-
out deterministic peaks: (i) the TARCH model [19], and
(ii) the stochastic volatility model presented in [20]. We
will see that both models give the same results than those
of the DE technique. We finally discuss the prescription
given in equation (4) based on multi-agent models to see
whether it agrees with our results or not.

3.1 The TARCH model

This particular ARCH model, called TARCH by its au-
thors [19], is given by

σ2
t = k + αR2

t−1 + βσ2
t−1 + γΘ(−Rt−1)R2

t−1 (18)
Rt = σtηt

where σt is the volatility, Rt is the one day return calcu-
lated at time t (which implies that the time step of the
model is t0 = 1 day), Θ(x) is the Heavyside step function
and ηt is Gaussian noise with zero mean and unit vari-
ance. The other parameters, estimated from daily data
of the Dow Jones Industrial Average Index from 1988 to
2000 and reported in [19], are: k = 0.0184, α = 0.0151,
γ = 0.0654, β = 0.9282 [27]. Using equation (18) we gen-
erate a time series for σt. We then perform the DE anal-
ysis on this series by defining, with the notation of equa-
tion (5), the process

yl(nt0) = c
l∑

i=l−nt0

σi, (19)
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Fig. 3. Results of the DE analysis for US dollar – Deutsche
mark futures with T = 0 (solid circles), the TARCH model
(empty circles), the SV model (diamonds), and finally for the
on-off intermittency model as given by equation (4) (solid
squares).

where t0 is the time step of the model, n is a positive
integer, l is an integer multiple of t0, σi is the volatility
and c is a proportionality constant. The results are shown
in Figure 3 (empty circles) compared with the results on
real data for T = 0 (solid circles). We clearly see that the
TARCH model predicts for t < tP a scaling exponent δ =
0.90 which agrees with actual data. For t greater than a
Poissonian time tP ≈ 100 days the model yields δ = 0.5. It
is worth noticing that the change in the slope of real data
is likely due to the lack of statistics. Moreover, we do not
have enough data points to determine whether the change
of slope takes place at the same time scale than in the
TARCH model. Nevertheless, ARCH-type models (similar
results were obtained with γ = 0 in Eq. (18)) seem to take
into account the correct structure of the intermittency of
financial series.

We should now stress the fact that the value of the
constant c which appears in equation (19) is somewhat
arbitrary depending on the details of the model and on
the value of t0. Nevertheless we perform different numer-
ical test showing that changing the value of c modifies
the absolute value of the diffusion entropy but it does not
change the slope δ (in some sense changing c means a dif-
ferent choice for the binning used to calculate the diffusion
entropy). In Figure 3 we choose the value of c in order to
superimpose the graph obtained from the TARCH model
on the one coming from the real data. The same is done
in the next section for the SV model. We also observe
that the results of the DE analysis remain unchanged if in
equation (19) we replace σi by σ2

i .

From the series generated using equation (18) we can
also evaluate the waiting time distribution between peaks
because now we do not have deterministic peaks and other
periodic effects that are present in real data. The result is
shown in Figure 4 and as we see there that for τc < tP a

0.0001
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φ(
τ c
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TARCH

~1/τc
2.1

Exponential

Fig. 4. Waiting time distribution for the distance between
clusters τc (in logarithmic scale) for the TARCH model (solid
circles) and the SV model (empty circles). A distinct asymp-
totic behavior is clearly present: a power-law tail with exponent
µ � 2.1 and an exponential decay.

good fit is provided by the following power-law:

φ(τc) � (µ− 1)ν
(1 + ντc)µ

, (20)

where ν = 0.1 day −1 and µ = 2.1. For τc > tP a clear
exponential (Poisson) behavior is present. This result has
a simple physical explanation: if there is a first cluster at
time t the probability to observe another one just after
the first is high while very distant clusters are practically
independent which explains the asymptotic Poissonian be-
havior that we observe in Figure 4.

3.2 An stochastic volatility model

There exists another way of modelling volatility cluster-
ing. The so-called stochastic volatility models [4,5,20] are
an alternative choice to ARCH models and they are con-
sidered to be the most natural extension to the classic
geometric Brownian motion for the price dynamics in con-
tinuous time finance. Let us start with the zero-mean re-
turn X(t) (i.e., the detrended log-price) the dynamics of
which is governed by the following stochastic differential
equation

Ẋ(t) = σξ1(t), (21)

where this equation has to be understood in the Itô sense,
σ is the volatility and ξ1dt is the Wiener process, i.e., ξ1(t)
is Gaussian white noise with zero mean and correlation
function given by

〈ξ1(t)ξ1(t′)〉 = δ(t− t′). (22)

All SV models assume that the volatility σ is itself a
random process. There are several ways to describe the
dynamics of the volatility [4]. One of the simplest mod-
els, which still contains almost all the basic ingredients
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prescribed by real markets, is given by the Ornstein-
Uhlenbeck (OU) process [20]

σ̇(t) = −a[σ(t) −m] + kξ2(t). (23)

One key property of this model is that it exhibits a sta-
tionary solution due to the reverting force — quantified
by a — to a certain averagem, the so-called “normal level
of volatility”. The stationary solution is a Gaussian dis-
tribution and the resulting distribution for the return has
fat tails [20]. In addition, stylized facts such as the neg-
ative skewness and the leverage correlation [5,20] require
that the changes of the volatility be negatively correlated
with the random source of return changes. In other words,
the driving noises appearing in equations (21, 23) are anti
correlated, that is:

〈ξ1(t)ξ2(t′)〉 = ρδ(t− t′)

where −1 ≤ ρ ≤ 0. For the OU SV model as given in
equation (23) the characteristic exponential time decay of
the leverage correlation is given by 1/a which is typically
of the order of few trading days (see below).

Although the OU model has some disagreements with
some experimental observations [28], it is complex enough
to catch all the statistical properties that we are studying
here. We therefore simulate the SV model with the param-
eters estimated from daily data of the Dow Jones Index
from 1900 to 1999. Thus, the reverting force is equal to a =
0.05 days−1, the noise amplitude is k = 0.0014 days−1, the
normal level of volatility reads m = 0.011 days−1/2 and
the correlation coefficient is ρ = −0.5 [20]. We set the time
step t0 = 1 hour. The results of the DE analysis are re-
ported in Figure 3 (diamonds) while the waiting time dis-
tribution between clusters is shown in Figure 4 (empty cir-
cles). In this case, and analogously to the TARCH model,
we also observe a power-law behavior followed by an expo-
nential decay. The only difference lies in the value of the
Poissonian time tP which for this model is near to 40 days
while for the TARCH model is approximately 100 days.
We have checked numerically that this difference is due to
the fact that the parameters defining each model are esti-
mated from the Dow Jones index over different periods of
time, much larger for the SV model than for the TARCH
model. In any case, we cannot discard any of these ap-
proaches on the basis of the empirical results.

3.3 On-off intermittency models

The intermittent model of the activity is also predicted
and studied by several multi-agent or minority game mod-
els [8,9,29]. These models can be connected to on-off inter-
mittency and they generally imply that the persistence of
activity is subordinated to a random walk which indicates
that the waiting time distribution has the form given in
equation (4). As suggested in [8,9] we also obtain the so-
called variogram of the data, although the results denote
that, if a 3/2 tail is present like in equation (4), causing a√
t behavior in the variogram, the tail lasts less than 5 days

probably because the FX market is more liquid than the

ones considered in [8,9]. Furthermore the DE analysis per-
formed on a series generated according to equation (4) also
leads to a transient followed by the exponent δ = 0.5 of
the asymptotic behavior whereas, as is clearly seen in Fig-
ure 3, the transient never exhibits the exponent δ = 0.90
beyond 1 day but presents a constantly increasing expo-
nent which is most of the time greater than 1.

4 Conclusions

We have performed the DE analysis on the activity of the
tick by tick time series US dollar – Deutsche mark futures
from 1993 to 1997. The results clearly show the presence
of an anomalous scaling, for the probability distribution
of the activity, p(y, t), near the exponent δ = 0.90. We
have also implemented the same analysis on the volatil-
ity obtained with the TARCH model and with the OU
stochastic volatility model. We find in both cases an ex-
cellent agreement between the scaling measured either on
actual data and on the constructed series.

We compare the results with the scheme of the sub-
ordination of the volatility to a random walk leading to
equation (4) observing that a power-law exponent µ ≈ 2
for the tail of the distribution of the distances between
peaks φ(τc) of volatility is more plausible. We believe that
the main reason why the TARCH and the SV models give
better results is that in on-off intermittency models the
occurrence of a peak can be considered as subordinated
to a random walk but the weak restoring force (which has
to be included in the model in order to describe mean
reversion) not only causes the final stationarity and the
exponential tail of Figure 4 but also affects the process
of regression to equilibrium modifying it in a fundamen-
tal way (from µ = 3/2 to µ � 2) the transient behavior
of φ(τc).
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